<110> LAMBERTY, MIREILLE
BULET, PHILLIPE
BROOKHART, GARY
HOFFMAN, JULES
<I20> GENE CODING FOR HELIOMICINE, AND USE
THEREOF
<130> A33595-PCT-USA
<140> 09/673,274.
<141> 1999-04-12
<150> PCT/FR99/00843
<151> 1999-04-12
<150> FR 98 04933
<151> 1998-04-15
<160> 38
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 147
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 1
agcttggata aaagagacaa gttgattggc agctgtgttt ggggcgccgt caactacact 60
agtgactgca acggcgagtg caagcgccgc ggttacaagg gtggccattg tggatccttc 120
gctaacgtta actgttggtg tgaaacc 147
<210> 2
<211> 169
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 2
gataagctta tcggttcctg cgtgtggggt gctgtgaact acacttccga ttgcaacggt 60
gagtgcaaga ggaggggtta caagggtggt cactgcggtt ccttcgctaa cgtgaactgc 120
tggtgcgaga cttgagagct cggcgaggcg aacgtgtcga cggatccgg 169
<210> 3
<211> 261
<212> DNA

```
```

 <213> Artificial Sequence
 <220>
 <223> SYNTHETIC POLYNUCLEOTIDE
 <400> 3
ccatgggttt cgtgcttttc tctcagcttc catctttcct tcttgtgtct actcttcttc 60
ttttccttgt gatctctcac tcttgccgtg ccgataagct tatcggttcc tgcgtgtggg 120
gtgctgtgaa ctacacttcc gattgcaacg gtgagtgcaa gaggaggggt tacaagggtg 180
gtcactgcgg ttccttcgct aacgtgaact gctggtgcga gacttgagag ctcggcgagg 240
cgaacgtgtc gacggatccg g 261
<210> 4
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 4
gcgtcgacgc gatgggtttc gtgcttttct ctcagcttcc atctttcctt cttgtgtcta 60
ctcttcttct tttccttgtg atctctcact cttgccgtgc tggagacgcg aattcacaca 120
<210> 5
<211> 75
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 5
gcgtcgacgc gatgggtttc gtgcttttct ctcagcttcc atctttcctt cttgtgtcta 60
ctcttcttct tttcc75
<210> 6
<211> 72
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 6
tcgccggcac ggcaagagta agagatcaca aggaaaagaa gaagagtaga cacaagaagg 60
aaagatggaa gc
<210> 7
<211> 80
<212> DNA
<213> Artificial Sequence

```
```

<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 7
gataagctta tcggttcctg cgtgtggggt gctgtgaact acacttccga ttgcaacggt 60
gagtgcaaga ggaggggtta }8
<210> 8
<211> 109
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 8
ccggatccgt cgacacgttc gcctcgccga gctctcaagt ctcgcaccag cagttcacgt 60
tagcgaagga accgcagtga ccacccttgt aacccctcct cttgcactc 109
<210> 9
<211> 85
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE

```
<400> 9
agggccccct agggtttaa cggccagtca ggccgaattc gagctcggta cccggggatc 60
ctctagagtc gacctgcagg catgc
                            85
<210> 10
<211> 66
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 10
ccctgaacca ggctcgaggg cgcgccttaa ttaaaagctt gcatgcctgc aggtcgactc 60
tagagg
                                    66
<210> 11
<211> 93
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
```

<400> 11
ccggccagtc aggccacact taattaagtt taaacgcggc cccggcgcgc ctaggtgtgt 60
gctcgagggc ccaacctcag tacctggttc agg 93
<210> 12
<211> 93
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 12
ccggcctgaa ccaggtactg aggttgggcc ctcgagcaca cacctaggcg cgccggggcc 60
gcgtttaaac ttaattaagt gtggcctgac tgg 93
<210> 13
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 13
ggtctagaat ggcctgcacc aacaacgcca tgagggccet cttcctcctc
5 0
<210> 14
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 14
ccgaattcgg cgccgtgcac gatgcagaag agcacgagga ggaagagggc 50
<210> 15
<211> 81
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 15
tctagaatgg cctgcaccaa caacgccatg agggccctct tcctcctcct gctcttctgc 60
atcgtgcacg gcgccgaatt c
81
<210> 16
<211> 24
<212> DNA

```
```

<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 16
gataagctta tcggttcctg cgtg 24
<210> 17
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 17
ggctcgagtc aagtctcgca ccagcagttc ac 32
<210> 18
<211> 213
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 18
tctagaatgg cctgcaccaa caacgccatg agggccctct tcctcctcct gctcttctgc 60
atcgtgcacg gcgataagct tatcggttcc tgcgtgtggg gtgctgtgaa ctacacttcc 120
gattgcaacg gtgagtgcaa gaggaggggt tacaagggtg gtcactgcgg ttccttcgct 180
aacgtgaact gctggtgcga gacttgactc gag 213
<210> 19
<211> 838
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<221> promoter
<222> (7)...(532)
<221> misc_structure
<222> (533)...(568)
<221> terminator
<222> (569)...(832)
<400> 19
aagcttccag aaggtaatta tccaagatgt agcatcaaga atccaatgtt tacgggaaaa 60
actatggaag tattatgtga gctcagcaag aagcagatca atatgcggca catatgcaac 120

```

```

<221> promoter
<222> (7)...(532)
<221> CDS
<222> (539)...(736)
<221> terminator
<222> (767)...(1030)
<400> 20
aagcttccag aaggtaatta tccaagatgt agcatcaaga atccaatgtt tacgggaaaa 60
actatggaag tattatgtga gctcagcaag aagcagatca atatgcggca catatgcaac 120
ctatgttcaa aaatgaagaa tgtacagata caagatccta tactgccaga atacgaagaa 180
gaatacgtag aaattgaaaa agaagaacca ggcgaagaaa agaatcttga agacgtaagc 240
actgacgaca acaatgaaaa gaagaagata aggtcggtga ttgtgaaaga gacatagagg 300
acacatgtaa ggtggaaaat gtaagggcgg aaagtaacct tatcacaaag gaatcttatc 360
ccccactact tatcctttta tatttttccg tgtcattttt gcccttgagt tttcctatat 420
aaggaaccaa gttcggcatt tgtgaaaaca agaaaaaatt tggtgtaagc tattttcttt 480
gaagtactga ggatacaact tcagagaaat ttgtaagttt gtagatctcg attctaga }53
atg gcc tgc acc aac aac gcc atg agg gcc ctc ttc ctc ctc gtg ctc 5 56
Met Ala Cys Thr Asn Asn Ala Met Arg Ala Leu Phe Leu Leu Val Leu
1 5 10 15
ttc tgc atc gtg cac ggc gat aag ctt atc ggt tcc tgc gtg tgg ggt 634
Phe Cys Ile Val His Gly Asp Lys Leu Ile Gly Ser Cys Val Trp Gly
20 25 30
gct gtg aac tac act tcc gat tgc aac ggt gag tgc aag agg agg ggt 682
Ala Val Asn Tyr Thr Ser Asp Cys Asn Gly Glu Cys Lys Arg Arg Gly
35 40 45
tac aag ggt ggt cac tgc ggt tcc ttc gct aac gtg aac tgc tgg tgc

```
    gag act tgactcgagg gggggcccgg taccggatcc aattcccgat cgttcaaaca 786
    Glu Thr
    65
    tttggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg attatcatat 846 ( gtaatgcatg acgttattta 906
    <400> 21
agcttggata aaagagacaa gttgattggc agctgtgttt ggggcgccgt ca
    5 2
<210> 22
<211> 56
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 22
agtgtagttg acggcgcccc aaacacagct gccaatcaac ttgtctcttt tatcca56
<210> 23
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 23
actacactag tgactgcaac ggcgagtgca agcgccgcgg ttacaagggt gg
    5 2
<210> 24
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 24
cacaatggcc acccttgtaa ccgcggcgct tgcactcgce gttgcagtca ct
```

 <210> 25
 <211> 56
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> SYNTHETIC POLYNUCLEOTIDE
 <400> 25
 ccattgtgga tccttcgcta acgttaactg ttggtgtgaa acctgatagg tcgaca }5
 <210> 26
 <211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 26
gatctgtcga cctatcaggt ttcacaccaa cagttaacgt tagcgaagga tc 52
<210> 27
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 27
gatccttcgc taacgttaac tgttggtgta gaacctgata gg 42
<210> 28
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 28
tcgacctatc aggttctaca ccaacagtta acgttagcga ag42
<210> 29
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE

```
```

 <400> 29
 ctagtgactg caacggcgag tgcttgttgc gc 32
 <210> 30
 <211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 30
gcaacaagca ctcgccgttg cagtca 26
<210> 31
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 31
ctagtgactg cgctgctgag tgcaagcggc gc 32
<210> 32
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 32
gccgcttgca ctcagcagcg cagtca 26
<210> 33
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 33
agcttggata aaagagctgc tgctgctggt agctgtgttt
<210> 34
<211> 18
<212> DNA
<213> Artificial Sequence

```
```

 <220>
 <223> SYNTHETIC POLYNUCLEOTIDE
 <400> 34
 ggggcgccgt caactaca 18
 <210> 35
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> SYNTHETIC POLYNUCLEOTIDE
 <400> 35
 ctagtgtagt tgacggcgcc cc22
<210> 36
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 36
aaacacagct accagcagca gcagctcttt tatcca 36
<210> 37
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 37
ctagtgactg cgctgctgag tgcttgttgc gc 32
<210> 38
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> SYNTHETIC POLYNUCLEOTIDE
<400> 38
gcaacaagca ctcagcagcg cagtca

